171 research outputs found

    On the Global Regularity of a Helical-decimated Version of the 3D Navier-Stokes Equations

    Full text link
    We study the global regularity, for all time and all initial data in H1/2H^{1/2}, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L2βˆ’L^2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H1/2βˆ’H^{1/2}-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H1/2H^{1/2} and the time average of the square of the H3/2H^{3/2} norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato \cite{kato1,kato2}, to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences

    Role of helicity for large- and small-scale turbulent fluctuations

    Full text link
    The effect of the helicity on the dynamics of the turbulent flows is investigated. The aim is to disentangle the role of helicity in fixing the direction, the intensity and the fluctuations of the energy transfer across the inertial range of scales. We introduce an external parameter, α\alpha, that controls the mismatch between the number of positive and negative helically polarized Fourier modes. We present the first set of direct numerical simulations of Navier-Stokes equations from the fully symmetrical case, α=0\alpha=0, to the fully asymmetrical case, α=1\alpha=1, when only helical modes of one sign survive. We found a singular dependency of the direction of the energy cascade on α\alpha, measuring a positive forward flux as soon as only a few modes with different helical polarities are present. On the other hand, small-scales fluctuations are sensitive only to the degree of mode-reduction, leading to a vanishing intermittency already for values of α∼0.1\alpha \sim 0.1 and independently of the degree of mirror symmetry-breaking. Our findings suggest that intermittency is the result of a global mode-coupling in Fourier space.Comment: 4 Fig

    A note on the fluctuation of dissipative scale in turbulence

    Get PDF
    We present an application of the multifractal formalism able to predict the whole shape of the probability density function (pdf) of the dissipative scale, Ξ·. We discuss both intense velocity fluctuations, leading to dissipative scales smaller than the Kolmogorov scale, where the formalism gives a pdf decaying as a superposition of stretched exponential, and smooth velocity fluctuations, where the formalism predicts a power-law decay. Both trends are found to be in good agreement with recent direct numerical simulations [J. Schumacher, "Sub-Kolmogorov-scale fluctuations in fluid turbulence," Europhys. Lett.β€ˆ80, 54001 (2007)]

    Intermittency in Turbulence: Multiplicative random process in space and time

    Full text link
    We present a simple stochastic algorithm for generating multiplicative processes with multiscaling both in space and in time. With this algorithm we are able to reproduce a synthetic signal with the same space and time correlation as the one coming from shell models for turbulence and the one coming from a turbulent velocity field in a quasi-Lagrangian reference frame.Comment: 23 pages, 12 figure

    A closure theory for the split energy-helicity cascades in homogeneous isotropic homochiral turbulence

    Full text link
    We study the energy transfer properties of three dimensional homogeneous and isotropic turbulence where the non-linear transfer is altered in a way that helicity is made sign-definite, say positive. In this framework, known as homochiral turbulence, an adapted eddy-damped quasi-normal Markovian (EDQNM) closure is derived to analyze the dynamics at very large Reynolds numbers, of order 10510^5 based on the Taylor scale. In agreement with previous findings, an inverse cascade of energy with a kinetic energy spectrum like ∝kβˆ’5/3\propto k^{-5/3} is found for scales larger than the forcing one. Conjointly, a forward cascade of helicity towards larger wavenumbers is obtained, where the kinetic energy spectrum scales like ∝kβˆ’7/3\propto k^{-7/3}. By following the evolution of the closed spectral equations for a very long time and over a huge extensions of scales, we found the developing of a non monotonic shape for the front of the inverse energy flux. The very long time evolution of the kinetic energy and integral scale in both the forced and unforced cases is analyzed also.Comment: 8 pages, 3 figure

    The statistical properties of turbulence in the presence of a smart small-scale control

    Get PDF
    By means of high-resolution numerical simulations, we compare the statistical properties of homogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex filaments are strongly depleted, thanks to a non-linear extra viscosity acting preferentially on high vorticity regions. We show that the presence of such smart small-scale drag can strongly reduce intermittency and non-Gaussian fluctuations. Our results pave the way towards a deeper understanding on the fundamental role of degrees of freedom in turbulence as well as on the impact of (pseudo)coherent structures on the statistical small-scale properties. Our work can be seen as a first attempt to develop smart-Lagrangian forcing/drag mechanisms to control turbulence.Comment: 5 pages, 5 figure

    Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence

    Get PDF
    Small droplets in turbulent flows can undergo highly variable deformations and orientational dynamics. For neutrally buoyant droplets smaller than the Kolmogorov scale, the dominant effects from the surrounding turbulent flow arise through Lagrangian time histories of the velocity gradient tensor. Here we study the evolution of representative droplets using a model that includes rotation and stretching effects from the surrounding fluid, and restoration effects from surface tension including a constant droplet volume constraint, while assuming that the droplets maintain an ellipsoidal shape. The model is combined with Lagrangian time histories of the velocity gradient tensor extracted from DNS of turbulence to obtain simulated droplet evolutions. These are used to characterize the size, shape and orientation statistics of small droplets in turbulence. A critical capillary number, CacCa_c is identified associated with unbounded growth of one or two of the droplet's semi-axes. Exploiting analogies with dynamics of polymers in turbulence, the CacCa_c number can be predicted based on the large deviation theory for the largest Finite Time Lyapunov exponent. Also, for sub-critical CaCa the theory enables predictions of the slope of the power-law tails of droplet size distributions in turbulence. For cases when the viscosities of droplet and outer fluid differ in a way that enables vorticity to decorrelate the shape from the straining directions, the large deviation formalism based on the stretching properties of the velocity gradient tensor loses validity and its predictions fail. Even considering the limitations of the assumed ellipsoidal droplet shape, the results highlight the complex coupling between droplet deformation, orientation and the local fluid velocity gradient tensor to be expected when small viscous drops interact with turbulent flows

    Statistics of small scale vortex filaments in turbulence

    Full text link
    We study the statistical properties of coherent, small-scales, filamentary-like structures in Turbulence. In order to follow in time such complex spatial structures, we integrate Lagrangian and Eulerian measurements by seeding the flow with light particles. We show that light particles preferentially concentrate in small filamentary regions of high persistent vorticity (vortex filaments). We measure the fractal dimension of the attracting set and the probability that two particles do not separate for long time lapses. We fortify the signal-to-noise ratio by exploiting multi-particles correlations on the dynamics of bunches of particles. In doing that, we are able to give a first quantitative estimation of the vortex-filaments life-times, showing the presence of events as long as the integral correlation time. The same technique introduced here could be used in experiments as long as one is capable to track clouds of bubbles in turbulence for a relatively long period of time, at high Reynolds numbers; shading light on the dynamics of small-scale vorticity in realistic turbulent flows.Comment: 5 pages, 5 figure
    • …
    corecore